skip to main content


Search for: All records

Creators/Authors contains: "Rogers, Haldre S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. McConkey, Kim (Ed.)
    Abstract Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies. 
    more » « less
  2. Aslan, Claire (Ed.)
    Abstract The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel. 
    more » « less
  3. Abstract

    Personality, or repeatable variation in behavior, may impact an animal's survival or reproduction. Parental aggression is one such personality trait with potentially direct implications for fitness, as it can improve offspring survival during vulnerable early life stages. We took advantage of a long‐term nest box and fledgling survival monitoring project to explore the potential fitness consequences of both repeatability and variation in parental aggression in breeding pairs of a locally endangered passerine species (Såli: Micronesian starling,Aplonis opaca) in the presence of an invasive predator, the brown treesnake (Boiga irregularis), on the island of Guam. To do so, we tested for associations between aggressive offspring defense throughout the nesting cycle and three fitness measures: hatching success, fledging success, and post‐fledging survival. Aggression varied greatly among breeding pairs and was repeatable within pairs (R = .47), providing evidence of a personality trait. Consistent with parental investment theory, nest stage was the best predictor of parental aggression, which increased with offspring age. Aggression was positively correlated with hatching success during the egg stage, but not nestling or post‐fledging survival. We propose that parental aggression was decoupled from nestling and fledgling survival because parents were unable to defend young from nocturnal, invasive brown treesnakes. More broadly, our findings demonstrate that repeatable variation in personality traits may not necessarily confer fitness benefits, particularly in the presence of invasive predators.

     
    more » « less
  4. Abstract As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward. 
    more » « less
  5. McConkey, Kim (Ed.)
    Abstract Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity. 
    more » « less
  6. Abstract Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption. 
    more » « less